Prevalence’s of Dyslipidemia in medication of Psychotic Disorders.

Dr. Syed Zafar Abbas¹, Syed Razi Muhammad², Muhammad Ali³, Iqbal Pathan⁴

Abstract
Objective: The present study aimed to investigate the dyslipidemic effects of risperidone, clozapine, and haloperidol while teaching first-episode schizophrenia.

Place and Time: The sample (n=340) was selected from the outpatient department of the Sir Cows Jee Jehangir Institute of Psychiatry Hyderabad (CJIP). The selected patients were randomly grouped (100 each) to receive risperidone, clozapine and haloperidol and 40 were given placebo (multivitamin). This study was single blinded. The duration of study was 3 months (April to June 2011)

Results: The Mean, Standard Deviation and SEM values of risperidone was in total cholesterol level 207.2 ± 44.90 , 4.49, in HDL level 40.1 ± 6.60, .660, in LDL level 154.3 ± 28.64, 2.86, and in triglyceride level 179.7 ± 37.07 , 3.70. Chi-square test was used to compare the total cholesterol of control group and cholesterol level after risperidone 0.001 P value was<.005 highly significant

Conclusion: Patients with severe mental illnesses are at increased metabolic risk. Psychiatric medications can increase metabolic risk. Treatment decisions have implications for metabolic risk and outcomes.

Key Words: Psychosis, Risperidone, Clozapine, Haloperidol, Placebo, Hyperlipidemia.

Introduction: Antipsychotic medications are an important component in the medical management of many psychotic conditions. With the introduction of the second-generation antipsychotics over the last decade, the use of these medications has soared. Although the SGAs have many notable benefits compared with their earlier counterparts, their use has been associated with reports of dramatic weight gain, diabetes (even acute metabolic decompensation, e.g., diabetic ketoacidosis, and an atherogenic lipid profile (increased LDL cholesterol and triglyceride levels and decreased HDL cholesterol).¹

There is accumulating empirical evidence and growing clinical concern that some of the newer antipsychotic medications may increase the risk of hyperlipidemia. Case reports have linked treatment with clozapine and olanzapine to hyperlipidemia that disappears when antipsychotic medications are discontinued. Medical record reviews further support a connection between clozapine and olanzapine and the increased risk of hypertriglyceridemia. A small prospective observational study demonstrated that most patients developed hyperlipidemia during the first few months of olanzapine treatment.²

There is a high prevalence of the metabolic syndrome in patients with schizophrenic patients receiving second-generation antipsychotic agents. Increasing awareness of this fact among psychiatrists will help to prevent, detect, and treat this condition that is associated with considerable morbidity and mortality.³ Glucose and lipid metabolism dysfunction is a significant side effect associated with antipsychotics. Although there are many studies about the linkages between drugs and metabolic dysfunction, most of these studies have compared the effects of two antipsychotics on only one metabolic measure: either glucose or lipid metabolism.⁴ The risk of hyperlipidemia among people with schizophrenia exposed to new antipsychotics (clozapine, olanzapine, quetiapine, risperidone) compared with those exposed to older generation antipsychotics the greater⁵.

Clozapine and olanzapine, for example, appear to be associated with hyperlipidemia, which may be associated with changes in body weight. Other, newer antipsychotic agents may exhibit less liability for weight gain and the development of dyslipidemia⁶. This effect is higher in younger age⁷. An increased BMI, male gender and cigarette smoking and also major predictors of a decreased HDL-cholesterol level.⁸ In the Malayysias study only non-Malays were found to have significant dyslipidaemia⁹.

Material and Methods:
The sample (n=340) was selected from the outpatient department of the Sir Cows J Jehangir Institute of Psy-
Original Research

chiatry Hyderabad (CJIP), using the criteria described below.

Inclusion criteria

1. The age of the subjects (males and females) was in the range of 20-60 years.
2. All subjects had paranoid schizophrenia.
3. The subjects had not have received any antipsychotic drug.

Informed consent was taken from the patient and/or a family member.

Exclusion criteria:

Patients with the following were excluded:

1. Co-morbid substance dependence, mood disorder, personality disorders
2. Evidence of organic conditions such as dementia and epilepsy.
3. Patients of other illness

The selected patients were admitted and randomly grouped (100 each) to receive risperidone, clozapine and haloperidol and 40 were put on placebo (multivitamin). Three months from April 2011 to June 2011 was duration of the study. At baseline, along with a complete psychiatric history and physical examination, assessment in both the groups was done using the Positive and Negative Syndrome Scale (PANSS) and brief psychiatric rating scale for efficacy, and lipid profile.

The patients were assessed at weekly intervals for 6 weeks using lipid profile, which was the key measure of antipsychotic safety.

The patients were also assessed every week till the end-point using the lipid profile. While no other antipsychotic treatment was allowed.

Limitations:

Currently: knowledge of the cost-effectiveness of different interventions to lower metabolic risk is limited. Questions remain concerning how to implement clinical strategies that would improve quality and disparities of care in mental illness. Future studies are needed to identify the mechanisms that allow medications to cause adiposity and changes in insulin sensitivity.

Results:

Table-1: Base line demography and base line score of participants in the study.

<table>
<thead>
<tr>
<th>Total No of Pts</th>
<th>Contl Group</th>
<th>Pts on Risp</th>
<th>Pts on Clozp</th>
<th>Pts on halo</th>
<th>Age 30-50</th>
<th>Age 50-onward</th>
<th>TC</th>
<th>THDL</th>
<th>TLDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Std</td>
<td>170.5 ± 98.294</td>
<td>20.50 ± 11.690</td>
<td>50.50 ± 29.011</td>
<td>50.50 ± 29.011</td>
<td>41.4 ± 5.132</td>
<td>59.4 ± 4.661</td>
<td>185.8 ± 9.721</td>
<td>42.2 ± 4.899</td>
<td>140.9 ± 6.658</td>
</tr>
<tr>
<td>SEM</td>
<td>5.331</td>
<td>1.848</td>
<td>2.901</td>
<td>2.901</td>
<td>.637</td>
<td>.788</td>
<td>.972</td>
<td>.490</td>
<td>.666</td>
</tr>
<tr>
<td>Male</td>
<td>178</td>
<td>52.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>172</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pts-Patients, Contrl-Conrol, Risp-Risperidone, Clozp-Clozapine, Halo-Haloperidol, TC-Total Cholestrol, THDL-Total High density lipoproteins, TLDL-Total Low density lipoprotein, Ttrig-Total Triglyceride

Figure-1A:

Base line demography and base line score of participants in the study.

In table and figure no-1 showed basic score and demography of participants in the study, the biostatic values shoed that the Mean, standard deviaton and SEM of total participants is 170.5 ± 98.294,5.331, control group 20.50 ± 11.690 1.848, patients on risperidone 50.50 ± 29.011, 2.901,patients on clozapine 50.50 ± 29.011,2.901 ,patients on haloperidol 50.50 ± 29.011, 2.901, age of participants between 30-50 years 41.4 ± 5.132, .637, age of participants between 50-onwards...
59.4 ± 4.661, .788, total cholesterol level before treatment of psychosis 185.8 ± 9.721 , .972 , total HDL level before treatment of psychosis 42.2 ± 4.899, .490, total LDL level before treatment of psychosis 140.9 ± 6.658,

Table

<table>
<thead>
<tr>
<th>Drug</th>
<th>TC</th>
<th>HDL</th>
<th>LDL</th>
<th>Trig</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean# St.D</td>
<td>SEM</td>
<td>Mean# St.D</td>
<td>SEM</td>
<td>Mean# St.D</td>
</tr>
<tr>
<td>Risperidone</td>
<td>207.2 #44.90</td>
<td>4.49</td>
<td>40.1# 6.60</td>
<td>.660</td>
<td>154.3#28.64</td>
</tr>
<tr>
<td>Clozapine</td>
<td>213.5#59.15</td>
<td>5.91</td>
<td>39.4#7.72</td>
<td>.773</td>
<td>171.4#62.17</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>193.5#23.2</td>
<td>2.32</td>
<td>41.5#5.65</td>
<td>.566</td>
<td>154.8#44.4</td>
</tr>
<tr>
<td>Control Group</td>
<td>185.9#9.77</td>
<td>5.97</td>
<td>42.2#4.889</td>
<td>.486</td>
<td>659</td>
</tr>
</tbody>
</table>

Figure-02

The change scores in baseline with treatment of psychosis patients in the study. The Mean, Standard Deviation and SEM of quantitative values of risperidone in total cholesterol level 207.2 ± 44.90 , 4.49, in HDL level 40.1 ± 6.60 , .660, in LDL level 154.3 ± 28.64, 2.86,. and in triglyceride level 179.7 ± 37.07 , 3.70, Chi-square test of association was used to compare the total cholesterol of control group and cholesterol level after risperidone used in the treatment of psychosis P <.005 highly significant. The Mean, Standard Deviation and SEM of quantitative values of clozapine in total cholesterol level 213.5 ±59.15 , 5.91, , in HDL level 39.4 ±7.72, .773, in LDL level171.4 ± 62.17, 6.21, and in triglyceride level 182.9 ± 43.71 , 4.37,.Chi-square test of association was used to compare the total cholesterol of control group and cholesterol level after clozapine used in the treatment of psychosis P <.005 highly significant. The Mean, Standard Deviation and SEM of quantitative values of control group was in total cholesterol level, 185.9 ± 9.775 , .973, in HDL level 42.2 ± 4.889, .486, in LDL level 140.89 ± 6.626, .659, and in triglyceride level 162.33 ± 14.467, 1.439. Chi-square test of association was used to compare the total cholesterol of all participants and cholesterol level of control group in the treatment of psychosis P >.909 non significant.

Discussion:

Present study is consistent with the study of lambert et al (2005) in which olanzapine (OR = 1.20, 95% CI 1.08 -1.33) was associated with increased risk of developing hyperlipidemia compared with older antipsychotic medications. Exposure to clozapine (OR = 1.16, 95% CI 0.99-1.37), risperidone (OR = 1.00, 95% CI 0.90-1.12), and quetiapine (OR = 1.01, 95% CI 0.78-1.32) was not. Hypothesis tests comparing the 4 atypicals to one another revealed that the odds ratio for olanzapine was greater than that for risperidone (P = 0.002). Other than clozapine's odds ratio being significant at 24 weeks (OR = 1.22, 95% CI 1.03-1.45). The change scores in baseline with treatment of psychosis patients in the study. The Mean, Standard Deviation and SEM of quantitative values of risperidone was in total cholesterol level 207.2 ± 44.90 , 4.49, in HDL level 40.1 ± 6.60 , .660, in LDL level 154.8 ± 28.64, 2.86,. and in triglyceride level 179.7 ± 37.07 , 3.70, Chi-square test of association was used to compare the total cholesterol of control group and cholesterol level after risperidone used in the treatment of psychosis P <.005 highly significant. The Mean, Standard Deviation and SEM of quantitative values of control group was in total cholesterol level, 185.9 ± 9.775, .973, in HDL level 42.2 ± 4.889, .486, in LDL level 140.89 ± 6.626, .659, and in triglyceride level 162.33 ± 14.467, 1.439. Chi-square test of association was used to compare the total cholesterol of all participants and cholesterol level of control group in the treatment of psychosis P >.909 non significant.

Lipid abnormalities have been shown to occur in patients treated with clozapine, olanzapine, quetiapine, and risperidone. Clozapine and olanzapine, which produce the greatest weight gain, are associated with the greatest increases in total cholesterol, LDL cholesterol, and triglycerides and with decreased HDL cholesterol.

Our study is matched with the study of Pallava A et al (2012) Subjects on treatment with antipsychotics had significantly higher mean weight, body mass index,
waist circumference, calorie intake, triglycerides, epyry-
low-density lipoproteins, fasting blood sugar and posi-
tive family history of diabetes mellitus compared with
the antipsychotic-free/naïve ones. Subjects on antipsy-
chotics also had significantly higher prevalence of meta-
bolic syndrome. A positive association of metabolic syn-
drome was observed with age, being married, higher
education, executive jobs and ICD-10 diagnosis of
schizophrenia, duration of illness, family history of dia-
betes mellitus and family history of hypertension.13 The
Mean, Standard Deviation and SEM of quantities val-
ues of clozapine was in total cholesterol level 213.5
±59.15, 5.91, , in HDL level 39.4 ±7.72, .773, in LDL
level171.4 ± 62.17, 6.21, and in triglyceride level 182.9
±43.71 , 4.37,.Chi-square test of association was used to
compare the total cholesterol of control group and cho-
sterol level after clozapine used in the treatment of
psychosis P <.003 highly significant.
People with schizophrenia have higher rates of medical
illness and mortality than the general population. Carди-
vascular disease is a major contributor to premature
death in patients with schizophrenia. There has been an
increase literature discussing the high prevalence
dyslipidemia, which is one of risk factors for cardio-
vascular disease, induced by second genera-
tion antipsychotic agents.14 It has been proved in our
study that antipsychotic drugs cause hyperlipidemia.
The Mean, Standard Deviation nd SEM of quantitative
values of clozapine was in total cholesterol level, 193.5 ± 23.2, 2.32, in HDL level 41.5 ± 5.65, .566, in
LDL level154.8 ± 44.4, 4.44, and in triglyceride level
172.2 ±27.92, 2.79, Chi-square test of association was
used to compare the total cholesterol of control group and
cholesterol level after clozapine used in the treatment of
psychosis P <.003 highly significant.

References:
1. Nathaniel G. Clark, N. Beauregard St., Alexandria et
Antipsychotic Drugs and Obesity and Diabetes” Dia-
abetes Care February vol. 27 no. 2 596-601
2. Mark Olfson; Steven C. Marcus; Patricia Corey-
Lisle; A.V. Tuomari; Patricia Hines; Gilbert J. L’Ital-
ien (2006) “Hyperlipidemia Following Treatment
With Antipsychotic Medications” Am J Psychiatry
6;163:1821-1825
3. Urmila A. Kagal,Shashikant S. Torgal, Nanasaheb
M. Patil, Anil Malleshappa, (2012) “Prevalence of
the Metabolic Syndrome in Schizophrenic Patients
Receiving Second-Generation Antipsychotic
4. Ren-Rong Wu, Jing-Ping Zhao, Zhe-Ning Liu, Jin-
Guo Zhai, Xiao-Feng Guo, Wen-Bing Guo and Jing-
antipsychotics on glucose-insulin homeostasis and
lipid metabolism in first-episode schizophrenia”
PSYCHOPHARMACOLOGY Volume 186, Number
4, 572 578-384-5
5. Lambert BL, Chang KY, Tafesse E, Carson
W.Lambert BL, Chang KY, Tafesse E, Carson W.
(2005) “Association between antipsychotic treat-
ment and hyperlipidemia among California Medicaid
patients with schizophrenia” J Clin Psychopharma-
psychotic drugs” J Clin Psychiatry. 2004;65 Suppl
18:27-35.
7. Saari K, Koponen H, Laitinen J, Jokelainen
“Hyperlipidemia in persons using antipsychotic
medication: a general population-based birth cohort
8. Watanebe J, Suzuki Y, Sugai T, Fukui N, Ono
lipid profiles in Japanese patients with schizophrenia
controlled with antipsychotic agents.” Gen Hosp
9. Ruzanna ZZ, Ong LY, Cheah YC, Fairuz A, Marhani
M. 92012) “The association between dyslipidemia and types of antipsychotic medications among pa-
tients with chronic schizophrenia.” Med J Malay-
sia.67(1):39-44.
10. Lambert BL, Chang KY, Tafesse E, Carson W. As-
ociation between antipsychotic treatment and hy-
perlipidemia among California Medicaid patients
with schizophrenia J Clin Psychopharmacol.
11. Timothy J. Church, BS, PharmD, David A. Hamer,
PharmD, Timothy R. Ulbrich, PharmD Assessment
and Management of Atypical Antipsychotic-induced
Metabolic Abnormalities,USpharmacist 2010 availa-
12. American Diabetes Association,,American Psychiat-
ric Association,American Association of Clinical En-
docrinologists, and North American Association for
the Study of Obesity Consensus Development Con-
ference on Antipsychotics and Drugs and Obesity
Diabetes 10.2337/diarecare.27.2.596 Diabetes
Care February 2004vol. 27 no. 2 596-60,available from
http://care.diabetesjournals.org/content/27/2/596.long
13. Pallava A, Chadda RK, Sood M, Lakshmy R. Meta-
bolic syndrome in schizophrenia: a comparative
study of antipsychotic-free/naïve and antipsychotic-
treated patients from India. Nord J Psychiatry.
0292-6.